

U.S. Department of Transportation

National Highway Traffic Safety Administration

Safety Impact of Permitting Right-Turn-On-Red

A Report to Congress

By the

National Highway Traffic Safety Administration

December 1994

No Turn On Red

I us report was prepared by the

things of Program Development and Evaluation

Committee State of the State of

Technical Re	eport Do	cumentation	Pag
--------------	----------	-------------	-----

		Te	chnical Report De	ocumentation Page
1. Report No.	2. Government Accession	on No. 3. Re	ecipient's Catalog No.	
DOT HS 808				
4. Title and Subtitle		5. Re	eport Date	
Safety Impact of Permitting	Right-Turn-C		•	ber 1994
A Report to Congress By the	l l	erforming Organization		
	Nacional Hig	ilway Trailie 6. Pe		
Safety Administration				S-33
7. Author(s)		8. Pe	erforming Organization	n Report No.
Richard P. Compton and	<u>Edward V. Mi</u>			
Performing Organization Name and Address		10. V	Vork Unit No. (TRAIS)	
Evaluation Division				
		11. 0	Contract or Grant No.	
Office of Program Developme	nt and Evalua	tion		
Traffic Safety Programs		13. 7	ype of Report and Pe	riod Covered
12. Sponsoring Agency Name and Address				
			Report to	o Congress
National Highway Traffic Sa	fety Administ	ration		_
400 Seventh Street, S.W.	-		ponsoring Agency Co	nde
Washington, D.C. 20590		' ' '	policolling / golloy oc	,,,,,
15. Supplementary Notes	,			
	O			
Analysis of FARS and State	crasn records	was performed by	the Nationa	al Center for
Statistical Analysis				
16. Abstract				
The Energy Policy Act of 19	92 required N	HTSA to conduct a	etudy of th	ne cafety
impact of permitting right	and left turn	s on red lights	This manage	ie salety
impact of permitting right	and Terr carn	s on red lights.	This report	presents a
brief summary of the curren				
right and left turns at red				
presents the results of ana	lyses of curr	ently available d	ata assessin	ng the safety
impact of permitting right	turns on red.	_		
		•		
17. Key Words		18. Distribution Statement		
Right-Turn-On-Red (RTOR),		Document is avai	ilahle +^ +b	a nublic from
Left-Turn-On-Red (LTOR), sa	fatu impact	_		- 1
	recy impact,		rechnical in	
intersection crashes		SERVICE, 5285 Po		oad,
		Springfield, VA	22161	
		Phone: 703-487-	4650 or FAX:	703-321-8547
19. Security Classif. (of this report)	20. Security Classif.	(of this page)	21. No. of Pages	22. Price
**** = 1 = = = 1 = 1 = 1				
Unclassified	ı IIn	classified	47	J.

Form DOT F 1700.7 (8-72)

Reproduction of completed page authorized

Table of Contents

Executive Summary
Preface 4
Introduction
Previous Research
Approach 8
Results
Summary
Conclusion
References
Appendix
List of Figures
Figure 1. Number of Fatal Right-Turning Crashes
List of Tables
 Γable 1. Number and Type of Fatal Right-Turning Crashes

Table 3.	Percent of All Crashes that are Right Turn-on-Red Crashes	14
	Percentage of All Fatal and Injury Crashes That Are	
	Right-Turn-On-Red (RTOR) Fatal And Injury Crashes	15
Table 5.	Percentage of All Crashes At Signalized Intersections	
	that are Right-Turn-On-Red (RTOR) Crashes	15
Table 6.	Percentage of Right-Turn-On-Red (RTOR) Crashes	
	That Involve A Pedestrian or Bicyclist	16
Table 7.	Pedestrian/Bicyclist Right-Turn-On-Red (RTOR)	
	Crashes By Crash Type	17
Table 8.	Percentage of All Fatal Pedestrian and Bicyclists That Are	
	Right-Turn-On-Red (RTOR) Fatal Pedestrian and Bicyclist Crashes	17
	Right-Turn-On-Red (RTOR) Crashes By Time of Day	18
	Pedestrian Right-Turn-On-Red Crashes By Time of Day	18
Table 11.	Bicyclist Right-Turn-On-Red Crashes By Time of Day	19
Table 12.	Pedestrian Right-Turn-On-Red Crashes By Age	19
Table 13.	Bicyclist Right-Turn-On-Red Crashes By Age	20
Table 14.	Pedestrian Right-Turn-On-Red (RTOR) Crashes By Gender	20
Table 15.	Bicyclist Right-Turn-On-Red (RTOR) Crashes By Gender	21

Executive Summary

Since January 1, 1980, all 50 states and the District of Columbia and Puerto Rico have had laws permitting right-turn-on-red (RTOR) unless a sign prohibits the turn (New York's law does not apply in New York City). As of January 1, 1994, 43 jurisdictions provided for left-turn-on-red (LTOR) and nine did not. LTOR is permitted only at intersections of a one-way street with another one-way street. The Energy Policy Act of 1992 required a study to be conducted by NHTSA of the safety impact of permitting right and left turns on red lights. This report presents a brief summary of the current status of state implementation of laws permitting right and left turns at red lights, a brief review of previous research, and presents the results of analyses of currently available data assessing the safety impact of permitting right turns on red.

Previous research conducted in the mid to late 1970's showed that there appeared to be an increase in right-turning crashes at signalized intersections where RTOR was adopted. These studies suggested there was an approximately 23 percent increase in right-turning crashes at intersections where drivers were allowed to turn right on red. Right-turning crashes involving pedestrians were estimated to have increased by about 60 percent and bicyclist crashes by about 100 percent (Zador, 1984). The reader is cautioned that in these studies the actual number of right-turning crashes at signalized intersections involving pedestrians and bicyclists was relatively small so that a small increase in numbers yielded a large percentage increase.

It is important to note that these studies were all based on the adoption of RTOR laws almost twenty years ago. Estimates of the current safety impact of RTOR derived from these older studies and data are clearly not appropriate. Unfortunately, it is not possible to know or estimate the extent the observed increases in right-turning crashes resulting from adoption of RTOR during the 1970's is predictive of the current situation.

Ideally, determining the safety impact of RTOR and LTOR would involve measuring the extent that permitting RTOR and LTOR have increased the number of fatalities, injuries and crashes. Unfortunately, the current number of crashes due to RTOR or LTOR can not be determined from available data. However, using fatal crash data we can measure the potential magnitude of the problem in terms of the number of fatalities in right-turning crashes, and using state crash data we can ascertain the relative frequency, nature and characteristics of RTOR crashes.

Two sources of data were used in completing this report: the Fatal Accident Reporting System (FARS) and data from four state crash data files (Illinois, Indiana, Maryland, and Missouri). The FARS includes a code for a right-turn-on-red (RTOR) vehicle maneuver. However, the FARS does not include information on whether a vehicle was turning right on red at the time of the crash, only that the vehicle was turning right at the time of the crash at an intersection where RTOR is permitted.

The four-state files include on their accident report form either a code for a right-turn-on-red (RTOR) vehicle maneuver or other codes that make it possible to determine that a RTOR maneuver was executed. With one exception, data used in the analysis cover the years 1989-1992. From Illinois, only 1989-1991 data were available.

Neither FARS nor any state crash files include information for a left-turn-on-red vehicle maneuver. In addition, there are relatively few intersections where a left-turn-on-red is permissible. Thus, the incidence of LTOR crashes is undoubtedly extremely low. Consequently, this report does not include an analysis of the safety impact of LTOR vehicle maneuvers.

The analysis of FARS data showed that:

- Approximately 84 fatal crashes occurred per year during the 1982-1992 time period involving a right-turning vehicle at an intersection where RTOR is permitted. During this same time period there were 485,104 fatalities. Thus, less than 0.2 percent of all fatalities involved a right-turning vehicle maneuver at an intersection where RTOR is permitted. FARS, however, does not discern whether the traffic signal indication was red. Therefore, the actual number of fatal RTOR crashes is somewhere between zero and 84 and may be closer to zero than 84.
- Slightly less than half of the fatal RTOR crashes involve a pedestrian (44 percent), 10 percent a bicyclist and in 33 percent one vehicle striking another vehicle.

The results of the data analysis from the four state crash files suggest the following:

• Right-Turn-On-Red (RTOR) crashes represent a very small proportion of the total number of traffic crashes in the four states (0.05 percent).

- RTOR injury and fatal crashes represent a fraction of 1 percent of all fatal and injury crashes (0.06 percent).
- RTOR crashes represent a very small proportion of signalized intersection crashes (0.4 percent).
- When a RTOR crash occurs, a pedestrian or bicyclist is frequently involved. For all states for all years studied, the proportion of RTOR pedestrian or bicyclist crashes to all RTOR crashes was 22 percent.
- RTOR pedestrian and bicyclist crashes usually involve injury. Ninety-three percent of RTOR pedestrian or bicyclist crashes resulted in injury.
- Only 1 percent of RTOR pedestrian and bicyclist crashes resulted in fatal injury. However, less than one percent (0.2 percent) of all fatal pedestrian and bicyclist crashes result from a RTOR vehicle maneuver.
- RTOR pedestrian crashes are about evenly split between females and males, while RTOR bicyclist crashes predominately involve males.
- Most RTOR crashes occur between 6 a.m. and 6 p.m.

In conclusion, there are a relatively small number of deaths and injuries each year caused by RTOR crashes. These represent a very small percentage of all crashes, deaths and injuries. Because the number of crashes due to RTOR is small, the impact on traffic safety, therefore, has also been small. Insufficient data exist to analyze LTOR.

Preface

On behalf of the Administrator of the National Highway Traffic Safety Administration (NHTSA), the Office of Traffic Safety Programs has prepared this report on the safety impact of permitting right-turn-on-red (RTOR). This report to Congress and the Secretary of Transportation was undertaken in response to a requirement in the Energy Policy Act of 1992 (P.L. 102-486, signed 10/24/92) §141(d) which states:

- (d) Study Regarding Impact of Permitting Right and Left Turns on Red Lights.
- (1) In General. The Administrator of the National Highway Traffic Safety Administration, in consultation with State agencies with jurisdiction over traffic safety issues, shall conduct a study on the safety impact of the requirement specified in section 362(c)(5) of the Energy Policy and Conservation Act (42 U.S.C. 6322(c)(5)), particularly with respect to the impact on pedestrian safety.
- (2) REPORT. The Administrator shall report the findings of the study conducted under paragraph (1) to the Congress and Secretary not later than 2 years after the date of the enactment of this Act.

This report contains a brief summary of the current status of state implementation of laws permitting right and left turns at red lights, presents the results of analysis of currently available data and an assessment of the safety impact of permitting RTOR.

No data or prior research were discovered pertaining to left-turns-on-red (LTOR). In addition, LTOR is permitted only at intersections of a one-way street with another one-way street, and there are few such intersections. Thus, the incidence of LTOR crashes is undoubtedly extremely low. Consequently, this study and report focuses almost exclusively on RTOR.

Introduction

In 1975, an Energy Policy and Conservation Act was signed into law (on 12/22/75) which required the states to develop an energy conservation plan if they wished to qualify for Federal assistance. A part of the Department of Energy's policy to achieve greater energy efficiency and conservation nationally was to encourage all states which had not implemented RTOR to do so. By 1977, virtually all states permitted RTOR at a very high percentage of all signalized intersections.

Most states have adopted the definition and treatment of RTOR and LTOR as specified in the Uniform Vehicle Code (UVC) established by the National Committee on Uniform Traffic Laws and Ordinances (NCUTLO). The UVC restricts RTOR by requiring the driver to stop first and then to yield to approaching vehicles and to all pedestrians within the intersection:

UVC §11-202(c)3: "Except when a sign is in place prohibiting a turn, vehicular traffic facing any steady red signal may cautiously enter the intersection to turn right, or to turn left from a one-way street into a one-way street, after stopping as required by subsection (c)1 or subsection (c)2. After stopping, the driver shall yield the right of way to any vehicle in the intersection or approaching on another roadway so closely as to constitute an immediate hazard during the time such driver is moving across or within the intersection or junction of roadways. Such driver shall yield the right of way to pedestrians within the intersection or an adjacent crosswalk." (REVISED 1979)

In 1992, the Energy Policy and Conservation Act was amended (in the Energy Policy Act of 1992). The 1992 law contained a requirement that each state permit both RTOR and left-turn-on-red (LTOR) where safe:

42 USCS Sec. 6332 (c) -- Each proposed State energy conservation plan to be eligible for Federal assistance under this part shall include:

(5) a traffic law or regulation which, to the maximum extent practicable consistent with safety, permits the operator of a motor vehicle to turn such vehicle right at a red stop light after stopping, and to turn such vehicle left from a one-way street onto a one-way street at a red light after stopping.

[This LTOR provision is to take effect January 1, 1995.]

By January 1, 1980, all 52 jurisdictions in the U.S. (50 states, District of Columbia and Puerto Rico) had passed laws complying with the Energy Policy Act permitting RTOR unless a sign prohibits the turn (New York's law does not apply in New York City). As of January 1, 1994, 43 jurisdictions provided for LTOR and 9 did not.

Previous Research

After the original 1975 act encouraging states to adopt RTOR was passed, the Federal Highway Administration (FHWA) published a study that examined the economic and safety consequences of permitting RTOR. This study (McGee et al., 1976) concluded that there were substantial economic benefits associated with permitting RTOR (including reducing delays, fuel consumption and auto emissions, increasing intersection capacity and improving level of service) while resulting in an insignificant or no increase in crashes.

McGee et al. (1976) looked at crashes in a number of cities and counties that had adopted RTOR. They compare the number of crashes involving vehicles turning right during the red and green phases of the traffic signal cycle, before and after RTOR was permitted. They concluded that RTOR is associated with only a small and insignificant number of crashes. In their report they estimated that if RTOR was adopted at 80 percent of all signalized intersections nationwide at most "... about 11,200 accidents could result annually".

Parker et al. (1976) in a very small scale study of RTOR looked at crashes at 20 intersections in Virginia before and after adoption of RTOR. They reported a small but statistically insignificant increase in the number of crashes following RTOR.

In a larger study of 732 signalized intersection in 14 large cities, the American Association of state Highway and Transportation Officials (AASHTO, 1979) noted that there was an increase in the annual rate of right-turning crashes after adoption of right-turn-on-red. No increase in crashes overall was reported, while a 37 percent increase was noted in vehicles performing a right-turning maneuver.

Zador et al. (1982) examined crash data from six states where RTOR laws were adopted during 1974-1977, as well as data from three states where the law in effect

was unchanged throughout the same period. Zador et al. compared the frequency of crashes involving right-turning maneuvers at signalized intersections both before and after adoption of RTOR and with comparison states that did not change their laws with respect to RTOR during the study period.

Both the RTOR and comparison states experienced an increase in the overall frequency of right-turning crashes during the study period. However, there was a 21 percent greater increase in the frequency of right-turning crashes in the states adopting RTOR that the authors attributed to the adoption of RTOR.

In a NHTSA sponsored study to examine the effects of RTOR on pedestrian and bicyclist crashes at signalized intersections, Preusser et al., (1981) looked at right-turning crashes before and after adoption of RTOR in three states plus one city in a fourth state. They found that the frequency of pedestrian and bicyclist crashes involving right-turning vehicles at signalized intersections increased significantly following RTOR. The increases ranged from 43 percent to 107 percent for pedestrians and ranged from 72 percent to 123 percent for bicyclists in the three states studied. As a percentage of all pedestrian crashes, right-turning crashes at signalized intersections increased 55 percent (from 1.47 percent before RTOR to 2.28 percent after RTOR). As a percentage of all bicyclist crashes, right-turning crashes at signalized intersections increased 99 percent (from 1.40 percent before RTOR to 2.79 percent after RTOR).

Zador (1984) in a reanalysis of previously published data reported that RTOR laws led to an 18 percent increase in right-turning crashes at signalized intersections in the study sites. Based on a review of the literature, Zador (1984) estimates that right-turning crashes increase by about 23 percent at signalized intersections where drivers are allowed to turn right on red. Pedestrian crashes are estimated by Zador to increase by about 60 percent and bicyclist crashes by about 100 percent.

The reader is cautioned that the studies reviewed above involve the use of indirect measures of RTOR crashes, typically right-turning crashes at signalized intersections. These involve both vehicles turning right on the green light phase and red light phase of the traffic signal. One cannot assume all right-turning crashes at intersections where RTOR is prohibited (by sign or statute) involve right turns on the green light phase. Many right-turning crashes occur at intersections where it is prohibited by law (in the same way vehicles "running" a red light may crash).

Also, it should be noted that some of these studies looked at right-turning crashes at all signalized intersections while some of the studies looked only at signalized intersections where RTOR was adopted. Since it has been estimated that approximately 80 percent of all signalized intersections are appropriate for RTOR, the former will tend to lead to estimates that are 20 percent lower than in the latter studies.

It is important to note that these studies are all based on the adoption of RTOR laws almost twenty years ago. Estimates of the current safety impact of RTOR derived from these older studies and data are clearly not appropriate. Unfortunately, it is not possible to know or estimate the extent the observed increases in right-turning crashes resulting from adoption of RTOR during the 1970's is predictive of the current situation.

Approach

One of the implications of the fact that all states have had RTOR for some time is that it makes it extremely difficult to determine the current safety impact of this law. Ideally, determining the safety impact of RTOR would involve measuring the extent that permitting RTOR has increased the number of fatalities, injuries and crashes. This requires either comparing crash data from essentially identical intersections where RTOR is and is not permitted or having crash data from before and after adoption of RTOR at the same intersections. Neither of these approaches can be meaningfully used for the reasons discussed briefly below.

Because RTOR is almost universally allowed, we do not know what would happen in the absence of the RTOR law. Presumably there are crashes that occur as a result of permitting RTOR that would not occur if RTOR were universally prohibited or permitted only where designated. Unfortunately, current information regarding crash rates where RTOR is universally not allowed is unavailable. While many intersections are signed to prohibit RTOR, these are selected on the basis of fairly explicit traffic engineering criteria that suggested allowing RTOR would be hazardous or disruptive. Thus, crash rates from intersections where RTOR is currently prohibited cannot provide any indication of what the crash rate would be at intersections where RTOR is now allowed, if it were prohibited.

Data on crash rates at intersections from before RTOR was allowed would be at least 20 or more years old and not meaningfully comparable to current crash rates. Changes in vehicle characteristics, traffic volume, driver behavior, etc. cannot be measured readily. Thus, crash rate data for signalized intersections from a period prior to the adoption of RTOR, that could meaningfully be compared to crash rate data after adoption of RTOR is not available.

While it is not possible to determine the current safety impact of RTOR in terms of the number of increased fatalities, injuries, and crashes, it is possible to measure the potential magnitude of the problem in terms of the number of fatalities in right-turning crashes. In addition, by using state crash data, where available, we can ascertain the relative frequency, nature and characteristics of RTOR crashes.

Two sources of data were used in completing this study and report: the Fatal Accident Reporting System (FARS) and data from four state crash data files. The FARS includes a code for a right-turn-on-red (RTOR) vehicle maneuver. However, the FARS does not include information on whether a vehicle was turning right on red at the time of the crash, only that the vehicle was turning right at the time of the crash at an intersection where RTOR is permitted. The four state files include on their accident report form a code for a right-turn-on-red (RTOR) vehicle maneuver and other codes that make it possible to determine that a RTOR maneuver was executed. Neither FARS nor any state accident files include information for a left-turn-on-red (LTOR) vehicle maneuver. This report, consequently, does not include analysis of the safety impact of LTOR vehicle maneuvers.

Data from sources other than FARS and the four state files were considered, but none of these provide information about a RTOR vehicle maneuver. Other data sources considered include: the General Estimates System, the Crashworthiness Data System, the Crash Avoidance Research Data File, and crash data from the other 46 states.

Results

Fatal Crashes

Figures 1-3 present FARS data for 1982-1992 on crashes involving right-turning vehicle maneuvers. Figure 1 shows the number of fatal crashes by year where a right-turning vehicle maneuver was involved and where RTOR was permitted. An average of approximately 84 fatal crashes occurred per year during this time period involving a right-turning vehicle at an intersection where RTOR is permitted. The FARS data system does not contain information about the traffic signal indication (i.e., whether it was red, green, or yellow) at the time the right-turning vehicle was involved in the crash. Thus, it is impossible to know if the turning vehicles were turning right on a green or red indication. It is reasonable to assume some were turning right on a green indication when they were involved in the crash (e.g., striking a pedestrian, bicyclist, or some fixed object like a parked car or light pole). Therefore, the actual number of RTOR fatal crashes is undoubtedly something less than the number of right-turning fatal crashes as shown in Figure 1.

Figure 1

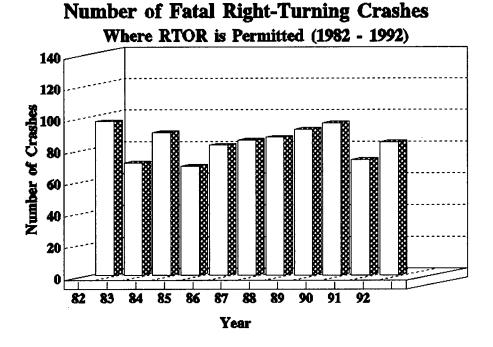


Figure 2

Percent of Fatal Right-Turning Crashes Where RTOR Is Permitted (1982 - 1992)

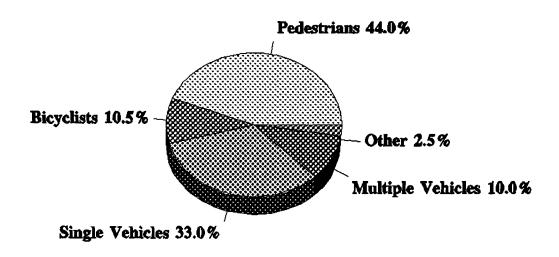


Figure 2 shows the percent of fatal right-turning crashes over the 11 year period by crash type (pedestrian, bicyclist, single vehicle, multiple vehicle, and other). Slightly less than half of these crashes involve a pedestrian (44 percent), 10 percent a bicyclist, and in 33 percent one vehicle striking another vehicle. Table 1 shows the number of fatal crashes by crash type for each year (1982-1992). Of the 926 fatal crashes over the 11 year period, 504 or about 54 percent involve either a pedestrian or bicyclist crash. Over the same 11 year period there were 82,286 pedestrian and bicyclist fatal crashes. Thus, approximately one-half of 1 percent (0.6 percent) of all pedestrian and bicyclist fatal crashes for this 11 year period involved a right-turning vehicle maneuver at an intersection where RTOR is permitted.

Table 1
Number and Type of Fatal Right-Turning Crashes
Where RTOR is Permitted (1982-1992)

Year	Crashes	Peds	Bikes	Multiple Vehicle	Single Vehicle	Other
1982	97	37	11	33	10	6
1983	71	34	4	16	11	6
1984	90	36	10	26	9	9
1985	69	33	6	22	8	
1986	82	31	10	32	8	1
1987	85	43	7	30	5	
1988	87	39	6	34	8	
1989	92	44	14	27	7	
1990	96	43	8	36	9	
1991	73	32	7	26	8	
1992	84	35	14	24	10	1
Totals	926	407 43.95%	97 10.48 <i>%</i>	306 33.05 <i>%</i>	93 10.04	23 2.48%

State Data

The National Center for Statistical Analysis maintains crash data files from 17 states. Of these, seven states were initially selected as possible candidates for obtaining RTOR data. After review of the actual data files, however, three states were removed from consideration because of missing data. Included in this analysis are data from four states. They are Illinois, Indiana, Maryland, and Missouri.

With one exception, data used in the analysis cover the years 1989-1992. From Illinois, only 1989-1991 data were available. The following analysis of state data looked at all crashes within a state, crashes at signalized intersections, RTOR crashes, and pedestrian and bicyclist crashes by year. RTOR, pedestrian, and bicyclist crashes are further broken down by time of day. Data involving crashes at signalized intersections for Illinois were unavailable.

Note that for each type of crash data analyzed, succeeding crash data are subsets of preceding crash data sets. Thus, crashes at signalized intersections are a subset of all crashes. RTOR crashes are a subset of signalized intersection crashes. And pedestrian and bicyclist crash data are subsets of RTOR crashes. Unfortunately, crash data are not always coded consistently so the numbers discussed below must be interpreted with caution as estimates. For example, a RTOR crash by definition occurs at a signalized intersection, however the roadway variable for signalized intersection is not always checked when a crash is coded as RTOR. For the purposes of this report, we used the vehicle maneuver code for RTOR as the determining factor (rather than the variable for intersection type) in counting a crash as RTOR. Thus, the number of signalized intersection crashes shown in the tables below are undoubtedly somewhat lower than the actual number of such crashes.

An analysis by each of the four states by year is presented in the Appendix. The patterns and relationships between the states and over the years studied were remarkably similar. Because no significant differences were revealed in the analysis by state, only the analyses combining the states and years is presented below.

Table 2

Number and Percent of All Crashes, Signalized Intersection Crashes, and RTOR Crashes by Severity
(Indiana, Maryland & Missouri for 1989 - 1992)

	All Cra	All Crashes		Signalized Intersection		RTOR	
	#	%	#	%	#	%	
Property Damage	1,338,089	69.8	197,001	62.3	836	65.5	
Injury	570,349	29.7	118,580	37.5	437	34.2	
Fatal	9,765	0.5	688	0.2	4	0.3	
Total	1,918,203	100.0	316,269	100.0	1277	100.0	

Table 2 shows the total number of police reported crashes in Indiana, Maryland, and Missouri for the years 1989-1992 by crash severity (i.e., property damage only, injury and fatal). In these three states, during the 4 year period, there were 1,918,203 police

reported crashes. More relevant to understanding the frequency with which RTOR crashes occur are the frequency of signalized intersection crashes. There were 316,269 signalized intersection crashes, of which 1277 (0.4 percent) involved a RTOR. Looking at crash severity, approximately one third of all crashes (30.2) percent) involve an injury or fatality. The percentage of crashes involving an injury or fatality is approximately 25 percent higher at signalized intersections (37.7 percent versus 30.2 percent) and somewhat lower for RTOR crashes (34.5 percent). Thus, RTOR crashes seem to involve slightly less injuries and fatalities than other crashes at signalized intersections.

To understand the relative frequency with which RTOR crashes occur, Table 3 shows the number and percentage of all crashes and RTOR crashes by crash severity. This table shows that RTOR crashes are five one-hundredths of 1 percent of all crashes.

Table 3 Percentage of All Crashes That Are Right-Turn-On-Red (RTOR) Crashes*

	All Crashes	RTOR Crashes	% RTOR
Property Damage	2,408,664	1,163	0.048
Injury	892,985	558	0.062
Fatal	14,029	4	0.029
TOTAL	3,315,678	1,725	0.052

^{*} Data from Indiana, Maryland, and Missouri, 1989-1992; Illinois, 1989-1991

Table 4 shows the number and percentage of fatal and injury crashes to RTOR fatal and injury crashes. This table indicates that fatal and injury crashes represent about six one-hundredths of 1 percent of all fatal and injury crashes. Fatal RTOR crashes represent less than three one-hundredths of 1 percent of all fatal crashes.

Table 4

Percentage of All Fatal and Injury Crashes That Are Right-Turn-On-Red (RTOR) Fatal And Injury Crashes

	Fatal & Injury Crashes	Fatal & Injury RTOR Crashes	% Fatal & Injury RTOR Crashes To Fatal & Injury Crashes
Injury	892,985	558	0.062
Fatal	14,029	4	0.029
TOTAL	907,014	562	0.062

By definition, RTOR crashes must occur at signalized intersections. Table 5 shows the number and percentage of all crashes and RTOR crashes at signalized intersections by crash severity. Table 5 indicates that RTOR crashes are about four tenths of 1 percent of all signalized intersection crashes. The proportions of property damage only and injury crashes are approximately the same. The proportion of fatal RTOR to all fatal crashes at signalized intersections, is less than six tenths of 1 percent.

Table 5

Percentage of All Crashes At Signalized Intersections
That Are Right-Turn-On-Red (RTOR) Crashes*

	Signalized Intersection Crashes	RTOR Crashes	% RTOR to Signalized Intersection Crashes
Property Damage	197,001	836	0.42
Injury	118,580	437	0.37
Fatal	688	4	0.58
TOTAL	316,269	1277	0.40

^{*} Data from Indiana, Maryland, and Missouri, 89-92; no signalized intersection data available for Illinois.

RTOR crashes frequently involve pedestrians and bicyclists. Table 6 shows the number and percent of all RTOR crashes to RTOR crashes involving pedestrians and bicyclists. Slightly more than 22 percent of all RTOR crashes involve either a pedestrian or bicyclist.

Table 6

Percentage of Right-Turn-On-Red (RTOR) Crashes
That Involve A Pedestrian or Bicyclist*

	RTOR Crashes	RTOR Pedestrian/ Bicyclist Crashes	% Pedestrian/ Bicyclist RTOR Crashes to RTOR Crashes
Property Damage/No Injury	1163	27	2.3
Injury	558	352	63.1
Fatal	4	4	100.0
TOTAL	1,725	383	22.2

^{*} Data from Indiana, Maryland, and Missouri, 1989-1992; Illinois, 1989-1991

Table 7 shows the distribution of RTOR crashes involving pedestrians and bicyclist by crash type. RTOR crashes involving pedestrians or bicyclist usually result in some degree of injury (approximately 93 percent).

Table 7

Pedestrian/Bicyclist Right-Turn-On-Red (RTOR)

Crashes By Crash Type

	RTOR Pedestrian/ Bicyclist Crashes	Percent
Property Damage/No Injury	27	7.1
Injury	352	91.9
Fatal	4	1.0
TOTAL	383	100.0

Table 8 gives the number and percent of all pedestrian and bicyclist fatal crashes to RTOR fatal crashes. The percentage of RTOR pedestrian and bicyclist fatal crashes to all pedestrian and bicyclist crashes is approximately two tenths of a percent.

Table 8

Percentage of All Fatal Pedestrian and Bicyclist Crashes That Are Right-Turn-On-Red (RTOR)*

	All Fatal Pedestrian/ Bicyclist Crashes	RTOR Fatal Pedestrian/ Bicyclist Crashes	Percent RTOR
Fatal	2194	4	0.18%

^{*} Data from Indiana, Maryland and Missouri, 1989 - 1992; Illinois, 1989 - 1991

Table 9 gives the number and proportion of RTOR crashes by time of day. Almost 76 percent of RTOR crashes occur from around 6 a.m. to 6 p.m.

Table 9

Right-Turn-On-Red (RTOR) Crashes

By Time of Day

TIME	NUMBER	PERCENT
6:01 a.m 6 p.m.	1303	75.5
6:01 p.m 6 a.m.	412	23.9
Unknown	10	0.6
TOTAL	1725	100.0

Tables 10 and 11 show that the preponderance of pedestrian and bicyclist RTOR crashes also occur from 6 a.m. to 6 p.m.

Table 10

Pedestrian Right-Turn-On-Red Crashes
By Time of Day

TIME	NUMBER	PERCENT
6:01 a.m 6 p.m.	185	74.6
6:01 p.m 6 a.m.	63	25.4
Unknown	0	0.0
TOTAL	248	100.0

Table 11

Bicyclist Right-Turn-On-Red Crashes
By Time of Day

TIME	NUMBER	PERCENT
6:01 a.m 6 p.m.	101	74.0
6:01 p.m 6 a.m.	33	24.5
Unknown	1	0.0
TOTAL	135	100.0

Table 12 gives the number and percent of pedestrian RTOR crashes by age. Table 12 shows that most RTOR pedestrian crashes involve pedestrians in the 16-64 age group.

Table 12
Pedestrian Right-Turn-On-Red Crashes
By Age

AGE	NUMBER	PERCENT
0 - 15	51	20.6
16 - 64	143	57.7
> 64	42	16.9
Unknown	12	4.8
TOTAL	248	100.0

Table 13 shows the number and percent of RTOR crashes involving bicyclist by age. The largest proportion of RTOR bicyclist crashes involve bicyclists under 16 years of age. However, almost 42 percent of the RTOR bicyclist crashes involved those in the 16-64 age category.

Table 13

Bicyclist Right-Turn-On-Red Crashes
By Age

AGE	NUMBER	PERCENT
0 - 15	65	48.2
16 - 64	56	41.5
> 64	6	4.4
Unknown	8	5.9
TOTAL	135	100.0

Tables 14 and 15 provide information about pedestrian and bicyclist RTOR crashes by gender. Table 14 shows that RTOR pedestrian crashes involve both females and males about equally. Table 15 shows that the preponderance of RTOR bicyclist crashes involve males (almost 80 percent).

Table 14

Pedestrian Right-Turn-On-Red (RTOR) Crashes By Gender

SEX	NUMBER	PERCENT
FEMALE	124	50.0
MALE	120	48.4
Unknown	4	1.6
TOTAL	248	100.0

Table 15
Bicyclist Right-Turn-On-Red (RTOR) Crashes
By Gender

SEX	NUMBER	PERCENT
FEMALE	27	20.0
MALE	105	77.8
Unknown	3	2.2
TOTAL	135	100.0

Summary

RTOR vehicle maneuvers that result in crashes represent failed maneuvers. It would be informative if the number of failed RTOR maneuvers could be compared with the number of successful RTOR maneuvers. Data concerning successful RTOR maneuvers, however, are not readily available and the collection of such data would require considerable time and effort.

The results of the FARS data analysis indicate the following:

- Approximately 84 fatal crashes occurred per year during the 1982-1992 time period involving a right-turning vehicle at an intersection where RTOR is permitted. During this same time period, there were 485,104 fatalities. Thus, less than 0.2 percent of all fatalities involved a right-turning vehicle maneuver at an intersection where RTOR is permitted. FARS, however, does not discern whether the traffic signal indication was red. Therefore, the actual number of fatal RTOR crashes is somewhere between zero and 84 and may be closer to zero than 84.
- Slightly less than half of the fatal RTOR crashes involve a pedestrian (44 percent), 10 percent a bicyclist, and in 33 percent one vehicle striking another vehicle.

The results of the data analysis from the four state crash files suggest the following:

- Right-Turn-On-Red (RTOR) crashes represent a very small proportion of the total number of traffic crashes in the four states (0.05 percent), and similarly a very small fraction all fatal (0.03 percent), injury (0.06 percent) and signalized intersection crashes (0.40 percent).
- Pedestrians and bicyclists are involved in about 22 percent of all RTOR crashes. RTOR pedestrian and bicyclist crashes usually involve injury.
 Ninety-three percent of RTOR pedestrian or bicyclist crashes resulted in injury.

injury. However, less than 1 percent (0.2 percent) of all fatal pedestrian and bicyclist crashes result from a RTOR vehicle maneuver.

- Most RTOR crashes occur between 6 a.m. and 6 p.m. (during daylight hours).
- RTOR pedestrian crashes are about evenly split between females and males, while RTOR bicyclist crashes predominately involve males.
- While most pedestrian's involved in RTOR crashes are 16 64 years of age (58 percent), a fair number are under 16 years old (21 percent), or 65 years old and over (17 percent).
- About half of the bicyclist's involved in RTOR crashes are less than 16 years of age (48 percent), slightly fewer between 16-64 years old (42 percent), with very few 65 years old and over (4 percent).

Conclusion

In conclusion, there are a relatively small number of deaths and injuries each year caused by RTOR crashes. These represent a very small percentage of all crashes, deaths and injuries. Because the number of crashes due to RTOR is small, the impact on traffic safety, therefore, has also been small. Insufficient data exist to analyze LTOR.

References

- American Association of State Highway and Transportation Officials, Safety and Delay Impact of Right Turn on Red, Task Force on Right Turn on Red (D.E. Orne, Chairman), Washington, D.C., June 1979.
- Fatal Accident Reporting System 1989, U.S. Department of Transportation, National Highway Traffic Safety Administration, DOT HS 807 693, March 1991.
- Fatal Accident Reporting System 1990, U.S. Department of Transportation, National Highway Traffic Safety Administration, DOT HS 807 794, December 1991.
- Fatal Accident Reporting System 1991, U.S. Department of Transportation, National Highway Traffic Safety Administration, DOT HS 807 954, March 1993.
- Highway Statistics 1992, U.S. Department of Transportation, Federal Highway Administration, FHWA-PL-93-023, HPM-40, October 1993.
- McGee H.W., Stimpson W.A., Cohen J., King G.F., and Morris R.F. Right Turn on Red. Volume I: Final Technical Report, Report No. FHWA-RD-76-89, Alan M. Voorhees and Associates, Inc., McLean Virginia, 1976.
- Parker, M.R., Jordan, Jr. R.F., Spencer, J.A., Beale, M.D. and Goodall, L.M. Right Turn on Red. A Report to the Governor and General Assembly of Virginia, Report No. VHTRC 76-R9, Charlottesville, Virginia, 1976.
- Preusser, D.F., Leaf, W.A., DeBartolo, K.B. and Blomberg, R.D. The Effects of Right-Turn-On-Red on Pedestrian and Bicyclist Accidents, Report No. DOT HS 806 182, Dunlap & Associates, Inc., Darien, Connecticut, 1981.
- Traffic Safety Facts 1992 (Revised), U.S. Department of Transportation, National Highway Traffic Safety Administration, DOT HS 808 022, March 1994.
- Traffic Safety Facts 1992: Bicyclists, U.S. Department of Transportation, National Highway Traffic Safety Administration, US GPO 1993-343-273:80101.

- Zador, P.L., Moshman, J. and Marcus, L. Adoption of right turn on Red: Effects of Crashes at Signalized Intersections, Accident Analysis & Prevention. 14(3), pp. 219-235, 1982.
- Zador, P.L. Right-Turn-On-Red Laws and Motor Vehicle Crashes: A Review of the Literature, Accident Analysis & Prevention, 16(4), pp. 241-245, 1984.

APPENDIX

Contents of Appendix

<u>State</u> Pag
Illinois
Indiana
Maryland
Missouri
List of Tables
Illinois
Table A-1. All Crashes by Severity
Table A-2. Right Turn on Red Crashes
Table A-3. Right Turn on Red Crashes by Time of Day
Table A-4. Pedestrians Involved in Right Turn on Red Crashes
Table A-5. Pedestrians Involved in Right Turn on Red Crashes by Time of Day
Table A-6. Bicyclists Involved in Right Turn on Red Crashes
Table A-7. Bicyclists Involved in Right Turn on Red Crashes by Time of Day
Indiana
Table 8. All Crashes by Severity
Table 9. Signalized Intersection Crashes
Table 10. Right Turn on Red Crashes
Table 11. Right Turn on Red Crashes by Time of Day
Table 12. Pedestrians Involved in Right Turn on Red Crashes
Table 13. Pedestrians Involved in Right Turn on Red Crashes by Time of Day
Table 14. Bicyclists Involved in Right Turn on Red Crashes
Table 15. Bicyclists Involved in Right Turn on Red Crashes by Time of Day
Maryland
Table 16. All Crashes by Severity
Table 17. Signalized Intersection Crashes

- Table 18. Right Turn on Red Crashes
- Table 19. Right Turn on Red Crashes by Time of Day
- Table 20. Pedestrians Involved in Right Turn on Red Crashes
- Table 21. Pedestrians Involved in Right Turn on Red Crashes by Time of Day
- Table 22. Bicyclists Involved in Right Turn on Red Crashes
- Table 23. Bicyclists Involved in Right Turn on Red Crashes by Time of Day

Missouri

- Table 24. All Crashes by Severity
- Table 25. Signalized Intersection Crashes
- Table 26. Right Turn on Red Crashes
- Table 27. Right Turn on Red Crashes by Time of Day
- Table 28. Pedestrians Involved in Right Turn on Red Crashes
- Table 29. Pedestrians Involved in Right Turn on Red Crashes by Time of Day
- Table 30. Bicyclists Involved in Right Turn on Red Crashes
- Table 31. Bicyclists Involved in Right Turn on Red Crashes by Time of Day

Illinois

Tables 1-7 present crash data from Illinois. From 1989-1991 there were 1,397,475 reported crashes (Table 1)¹. There were 326,900 injury and fatal crashes in Illinois over this three year period. For the same three years, there were 121 injury and no fatal crashes where a RTOR vehicle maneuver was involved (Table 2). The proportion of RTOR injury and fatal crashes to total injury and fatal crashes for the three years was approximately 0.04 percent (121/326,900). Table 3 shows that most (approximately 76 percent) of RTOR crashes occurred between the hours of 6 a.m. and 6 p.m.

Tables 4-7 indicate the number of RTOR pedestrian and bicyclist crashes. There were 42 RTOR pedestrians crashes from 1989-1991 (Table 4). All were injury crashes (there were no fatal crashes). Table 5 shows that about 74 percent of RTOR crashes involving pedestrians occurred between 6 a.m. and 6 p.m.

There were 48 RTOR crashes involving bicyclists from 1989-1991 (Table 6). Of these, seven resulted in no injury, 41 resulted in an injury, and there were no fatalities². Table 7 indicates that most (approximately 73 percent) RTOR crashes involving bicyclists occurred between 6 a.m. and 6 p.m.

Indiana

Tables 8-15 show crash data for Indiana for 1989-1992. There were 834,264 reported crashes from 1989 - 1992 (Table 8). Of these, 202,132 were either an injury or fatal crash. There were 122,773 crashes at signalized intersections (Table 9) including 36,300 injury and fatal crashes. Injury and fatal crashes at signalized intersections represent approximately 18 percent (36,300/202,132) of the total injury and fatal crashes.

¹Note that because of property damage only (PDO) reporting thresholds, not all PDO crashes are reported in a state. PDO crash reporting thresholds vary by state, and consequently, the number and proportion of PDO crashes to injury and fatal crashes will differ as a factor of the reporting threshold. All states require that crashes involving injuries or fatalities be reported.

²While a state may have a PDO crash reporting threshold, most states allow a citizen involved in a crash to request that a law enforcement official complete and submit an accident report. Further, most pedestrian and a majority of bicyclist cashes involve some degree of injury. Consequently, it is likely that a greater proportion of pedestrian and bicyclist crashes will be reported than other crashes where only property damage is involved.

Table 10 shows RTOR crashes. There were 212 total crashes of which 94, or about 44 percent, were either injury or fatal crashes. The proportion of RTOR injury and fatal crashes to total injury and fatal crashes is approximately 0.05 percent (94/202,132). The proportion of RTOR injury and fatal crashes to injury and fatal crashes at signalized intersections is about 0.25 percent (94/36,300).

Table 11 gives RTOR crashes by time of day. Almost 78 percent of the RTOR crashes in Indiana occurred between 6 a.m. and 6 p.m.

Table 12 shows the number of RTOR crashes where a pedestrian was involved. There was a total of 55 crashes, and with the exception of 1 crash, all were either injury or fatal crashes. Pedestrian injury and fatal crashes represent about 57 percent (54/94) of all RTOR injury and fatal crashes. From 1989-1992 there were 344 fatal crashes involving pedestrians. RTOR pedestrians crashes accounted for 1.2 percent (4/344) of these fatal crashes.

Table 13 indicates that about 76 percent of RTOR crashes involving pedestrians occur between 6 a.m. and 6 p.m.

Table 14 shows the number of RTOR crashes involving bicyclists. There were 18 injury and no fatal crashes over the 4 year period. RTOR injury bicyclist crashes represent about 19 percent (18/94) of all RTOR injury and fatal crashes. From 1989-1992, there was a total of 70 fatal bicyclist crashes in Indiana. None of these were related to a RTOR vehicle maneuver.

Table 15 shows that most RTOR crashes involving bicyclist occurred between 6 a.m. and 6 p.m.

Maryland

Table 16-23 provide crash data for Maryland from 1989-1992. From 1989-1992, there were 417,480 reported crashes (Table 16). Of these, 193,718 or about 46 percent were either injury or fatal crashes. Over this same period of time, there were 86,627 crashes at signalized intersections (Table 17), of which 48,972 (57 percent) were injury or fatal crashes. The proportion of injury and fatal crashes at signalized intersections to all injury and fatal crashes is about 25 percent (48,972/193,718) for this four-year period.

Table 18 shows the number of RTOR crashes in Maryland from 1989-1992. There was a total of 145 crashes of which 102, or 70 percent were injury crashes. There were no fatal RTOR crashes. The proportion of RTOR injury crashes to total injury and fatal crashes is 0.05 percent (102/193,718). The proportion of RTOR injury crashes to injury and fatal crashes at signalized intersections is approximately 0.2 percent (102/48,972).

Table 19 shows that about 63 percent of RTOR crashes occur between 6 a.m. and 6 p.m.

Table 20 shows the number of RTOR crashes involving pedestrians. There were 58 crashes, and with the exception of 1 crash, all resulted in injury. There were no fatal RTOR crashes involving pedestrians over the four-year period. Pedestrian injury crashes represent about 56 percent (57/102) of all RTOR injury crashes.

As indicated, from 1989-1992, there were 498 fatal pedestrian crashes in Maryland. None involved a RTOR vehicle maneuver.

Table 21 indicates that most (about 59 percent) of RTOR crashes involving pedestrians occurred between 6 a.m. and 6 p.m.

Table 22 shows the number of RTOR crashes involving bicyclists in Maryland from 1989-1992. There were 19 crashes of which 16, or about 84 percent, were injury crashes. There were no fatal RTOR crashes involving bicyclist over the four-year period. RTOR Bicyclist crashes where injury results represent about 16 percent (16/102) of the total RTOR injury crashes. In Maryland from 1989-1992, there were 41 fatal bicyclist crashes. None involved a RTOR vehicle maneuver.

Table 23 shows that about 63 percent of RTOR bicyclist crashes occur between 6 a.m. and 6 p.m.

Missouri

Tables 24-31 show crash data for the State of Missouri for 1989-1992.

Table 24 indicates that there were 666,459 reported crashes from 1989-1992. Of these, 184,264 or about 28 percent were injury or fatal crashes.

Table 25 provides information about signalized intersection crashes in Missouri from 1989-1992. Of the 106,869 reported crashes, 33,996 or about 32 percent, were recorded as injury or fatal crashes. The proportion of injury and fatal crashes at signalized intersections to total injury and fatal crashes was about 18 percent (33,996/184,264).

Table 26 gives information about RTOR crashes from 1989-1992. There was a total of 920 crashes. There were no fatal RTOR crashes and of the total RTOR crashes, 245 or about 27 percent were injury crashes. The proportion of RTOR injury crashes to total injury and fatal crashes is 0.13 percent (245/184,264). The proportion of RTOR injury crashes to injury and fatal crashes at signalized intersections is 0.72 percent (245/33,996).

Table 27 shows that about 77 percent of the RTOR crashes occurred from 6 a.m. - 6 p.m.

Table 28 indicates that there was a total of 93 RTOR crashes involving pedestrians. Of these, 86 or about 92 percent were injury crashes. There were no fatal RTOR crashes involving pedestrians over the four year period. RTOR pedestrian injury crashes represent about 35 percent (86/245) of the total RTOR injury crashes.

From 1989-1992, there was a total of 351 fatal pedestrians crashes in Missouri. None of these involved a RTOR vehicle maneuver.

Table 29 shows that most (about 80 percent) of RTOR pedestrian crashes occurred between 6 a.m. and 6 p.m.

Table 30 shows RTOR bicyclist crashes from 1989-1992. There were 50 crashes of which 42, or 84 percent were injury related. RTOR bicyclist crashes where injury results represent about 17 percent (42/245) of the total RTOR injury crashes.

From 1989-1992, there were 31 fatal bicyclist crashes. None of these involved a RTOR vehicle maneuver.

Table 31 shows that the bulk (74 percent) of RTOR crashes involving bicyclist occur between 6 a.m. - 6 p.m.

Table 1

Illinois
All Crashes By Severity

	1989	1990	1991	Total
Property Damage *	397,416	345,534	327,625	1,070,575
Injury	117,666	105,924	99,046	322,636
Fatal	1545	1430	1289	4264
Total	516,627	452,888	427,960	1,397,475

^{*} The reporting threshold for property damage only (PDO) crashes in Illinois before 1992 was \$250. Consequently, not all PDO crashes were reported.

Table 2

Illinois
Right Turn on Red Crashes

	1989	1990	1991	Total
Property Damage	151	82	94	327
Injury	48	35	38	121
Fatal	0	0	0	0
Total	199	117	132	448

Table 3

Illinois
Right Turn on Red Crashes
By Time of Day

	1989	1990	1991	Total
6:01 a.m 6 p.m.	155	85	100	340
6:01 p.m 6 a.m.	42	32	31	105
Unknown Time	2	0	1	3
Total	199	117	132	448

Table 4

Illinois

Pedestrians Involved in Right Turn on Red Crashes

	1989	1990	1991	Total
No Injury	0	0	0	0
Injury	18	9	15	42
Fatal	0	0	0	0
Total	18	9	15	42

Table 5

Illinois

Pedestrians Involved in Right Turn on Red Crashes

By Time of Day

	1989	1990	1991	Total
6:01 a.m 6 p.m.	13	6	12	31
6:01 p.m 6 a.m.	5	3	3	11
Total	18	9	15	42

Table 6

Illinois

Bicyclists Involved in Right Turn on Red Crashes

	1989	1990	1991	Total
No Injury	5	1	1	7
Injury	16	15	10	41
Fatal	0	0	0	0
Total	21	16	11	48

Table 7

Illinois
Bicyclists Involved in Right Turn on Red Crashes
By Time of Day

	1989	1990	1991	Total
6:01 a.m 6 p.m.	20	8	7	35
6:01 p.m 6 a.m.	1	8	4	13
Total	21	16	11	48

Table 8

Indiana
All Crashes By Severity

	1989	1990	1991	1992	Total
Property Damage *	191,820	140,618	132,004	167,690	632,132
Injury	53,816	48,901	45,646	50,258	198,621
Fatal	883	924	904	800	3511
Total	246,519	190,443	178,554	218,748	834,264

^{*} The reporting threshold for property damage only (PDO) crashes in Indiana from 1989-1992 was \$750.00. Consequently, not all PDO crashes were reported.

Table 9

Indiana
Signalized Intersection Crashes

	1989	1990	1991	1992	Total
Property Damage	26,593	21,020	19,365	19,495	86,473
Injury	9808	8893	8410	8967	36,078
Fatal	55	54	54	59	222
Total	36,456	29,967	27,829	28,521	122,773

Table 10

Indiana
Right Turn on Red Crashes

	1989	1990	1991	1992	Total
Property Damage	50	20	30	18	118
Injury	19	28	19	24	90
Fatal	0	2	1	1	4
Total	69	50	50	43	212

Indiana
Right Turn on Red Crashes
By Time of Day

	1989	1990	1991	1992	Total
6:01 a.m 6 p.m.	49	38	41	37	165
6:01 p.m 6 a.m.	18	11	9	4	42
Unknown Time	2	1	0	2	5
Total	69	50	50	43	212

Table 12

Indiana
Pedestrians Involved in Right Turn on Red Crashes

	1989	1990	1991	1992	Total
No Injury	0	1	0	0	1
Injury	9	15	11	15	50
Fatal	0	2	1	1	4
Total	9	18	12	16	55

Table 13

Indiana
Pedestrians Involved in Right Turn on Red Crashes
By Time of Day

	1989	1990	1991	1992	Total
6:01 a.m 6 p.m.	6	14	9	13	42
6:01 p.m 6 a.m.	3	4	3	3	13
Total	9	18	12	16	55

Table 14

Indiana

Bicyclists Involved in Right Turn on Red Crashes

	1989	1990	1991	1992	Total
No Injury	0	0	0	0	0
Injury	5	4	6	3	18
Fatal	0	0	0	0	0
Total	5	4	6	3	18

Table 15

Indiana
Bicyclists Involved in Right Turn on Red Crashes
By Time of Day

	1989	1990	1991	1992	Total
6:01 a.m 6 p.m.	4	4	6	3	17
6:01 p.m 6 a.m.	0	0	0	0	0
Unknown Time	1	0	0	0	1
Total	5	4	6	3	18

Table 16

Maryland
All Crashes By Severity

	1989	1990	1991	1992	Total
Property Damage *	62,160	57,884	52,010	51,708	223,762
Injury	50,248	48,893	44,802	47,180	191,123
Fatal	676	681	645	593	2595
Total	113,084	107,458	97,457	99,481	417,480

^{*} The reporting threshold for property damage only (PDO) crashes in Maryland is that one or more vehicles be towed away. Consequently, not all PDO crashes are reported.

Table 17

Maryland
Signalized Intersection Crashes

	1989	1990	1991	1992	Total
Property Damage	10,004	9508	8988	9155	37,655
Injury	12,102	12,436	11,723	12,433	48,694
Fatal	71	80	65	62	278
Total	22,177	22,024	20,776	21,650	86,627

Table 18

Maryland
Right Turn on Red Crashes

	1989	1990	1991	1992	Total
Property Damage	9	11	8	15	43
Injury	27	21	27	27	102
Fatal	0	0	0	0	0
Total	36	32	35	42	145

Table 19

Maryland
Right Turn on Red Crashes
By Time of Day

	1989	1990	1991	1992	Total
6:01 a.m 6 p.m.	19	24	18	30	91
6:01 p.m 6 a.m.	17	8	17	12	54
Total	36	32	35	42	145

Table 20

Maryland
Pedestrians Involved in Right Turn on Red Crashes

	1989	1990	1991	1992	Total
No Injury	1	0	0	. 0	1
Injury	13	15	18	11	57
Fatal	0	0	0	0	0
Total	14	15	18	11	58

Table 21

Maryland

Pedestrians Involved in Right Turn on Red Crashes

By Time of Day

	1989	1990	1991	1992	Total
6:01 a.m 6 p.m.	5	12	11	10	38
6:01 p.m 6 a.m.	9	3	7	1	20
Total	14	15	18	11	58

Table 22

Maryland
Bicyclists Involved in Right Turn on Red Crashes

	1989	1990	1991	1992	Total
No Injury	0	1	0	2	3
Injury	4	2	3	7	16
Fatal	0	0	0	0	0
Total	4	3	3	9	19

Table 23

Maryland

Bicyclists Involved in Right Turn on Red Crashes

By Time of Day

	1989	1990	1991	1992	Total
6:01 a.m 6 p.m.	2	2	1	7	12
6:01 p.m 6 a.m.	2	1	2	2	7
Total	4	3	3	9	19

Table 24

Missouri
All Crashes By Severity

	1989	1990	1991	1992	Total
Property Damage *	123,878	123,914	117,236	117,167	482,195
Injury	44,593	46,700	43,917	45,395	180,605
Fatal	936	943	906	874	3659
Total	169,407	171,557	162,059	163,436	666,459

^{*} The reporting threshold for property damage only (PDO) crashes in Missouri from 1989-1992 was \$500. Consequently, not all PDO crashes were reported.

Table 25

Missouri
Signalized Intersection Crashes

	1989	1990	1991	1992	Total
Property Damage	17,498	17,781	18,290	19,304	72,873
Injury	7948	8683	8274	8903	33,808
Fatal	41	44	47	56	188
Total	25,487	26,508	26,611	28,263	106,869

Table 26

Missouri
Right Turn on Red Crashes

	1989	1990	1991	1992	Total
Property Damage	156	178	171	170	675
Injury	64	57	56	68	245
Fatal	0	0	0	0	0
Total	220	235	227	238	920

Table 27

Missouri
Right Turn on Red Crashes
By Time of Day

	1989	1990	1991	1992	Total
6:01 a.m 6 p.m.	173	177	177	180	707
6:01 p.m 6 a.m.	47	57	50	57	211
Unknown Time	0	1	0	1	2
Total	220	235	227	238	920

Table 28

Missouri

Pedestrians Involved in Right Turn on Red Crashes

	1989	1990	1991	1992	Total
No Injury	0	2	1	4	7
Injury	24	24	19	19	86
Fatal	0	0	0	0	0
Total	24	26	20	23	93

Table 29

Missouri

Pedestrians Involved in Right Turn on Red Crashes

By Time of Day

	1989	1990	1991	1992	Total
6:01 a.m 6 p.m.	20	22	13	19	74
6:01 p.m 6 a.m.	4	4	7	4	19
Total	24	26	20	23	93

Table 30

Missouri

Bicyclists Involved in Right Turn on Red Crashes

	1989	1990	1991	1992	Total
No Injury	1	3	1	3	8
Injury	13	10	5	14	42
Fatal	0	0	0	0	0
Total	14	13	6	17	50

Table 31

Missouri

Bicyclists Involved in Right Turn on Red Crashes

By Time of Day

	1989	1990	1991	1992	Total
6:01 a.m 6 p.m.	11	10	4	12	37
6:01 p.m 6 a.m.	3	3	2	5	13
Total	14	13	6	17	50

DOT HS 808 200 NTS-33 12/94